Planning for the Future in a Changing Environment

June 27, 2013
STATE OF NEW YORK PUBLIC HEALTH AND HEALTH PLANNING COUNCIL Ad Hoc Advisory Committee on Environmental and Construction Standards

Vicki Match Suna, AIA
Vice Dean and Senior Vice President, Real Estate Development and
Facilities, NYU Langone Medical Center
Paul Schwabacher, PE
Senior Vice President, Facilities Management, Real Estate Development and Facilities, NYU Langone Medical Center

David Tepper, AIA
Associate Partner, Ennead Architects

Planning for the Future in a Changing Environments

CAMPUS TRANSFORMATION

Site Plan

CAMPUS TRANSFORMATION

Tisch Elevators and Lobby Expansion

Four new passenger elevators
Expanded and renovated lobby

Family space, conference and consult rooms on the inpatient floors

Electrical and IT risers

STATUS: Complete

CAMPUS TRANSFORMATION

Emergency Department

20,000 sf renovation, 3,400 sf new construction

Separate ambulatory and ambulance entries
Dedicated pediatric experience
28 exam/treatment positions
Trauma/resuscitation room \& 3 advanced triage rooms

Disposition Lounge w X-ray, ultrasound, and CT Scanner

STATUS: In Construction

CAMPUS TRANSFORMATION Energy Building

71,000 SF facility on FDR Drive, east of Tisch Hospital

8 MW Cogeneration Plant with standby boilers
7.5 MW Emergency Power Plant for Tisch Hospital and Energy Building

Campus High Tension Electric Service
Radiation Oncology
Loading dock facility
STATUS: In Construction

CAMPUS TRANSFORMATION Kimmel

800,000 SF clinical facility on $34^{\text {th }}$ Street and $1^{\text {st }}$ Avenue

32 ORs and procedure rooms, serving a mix of in- and outpatients

11 inpatient floors (374 beds) split about equally between acute and ICU

Single-bedded, same-handed rooms
Children' s Hospital within a Hospital
Clean docks, materials management, and central sterile processing dept.

Public Spaces:

- Plaza \& Lobby
- Roof Terrace and Café
- Conference Center

STATUS: Design Complete

CAMPUS TRANSFORMATION

Science Building

365,000 SF research facility on $30^{\text {th }}$ Street and FDR Drive

12,000-14,000 cage central vivarium 3000 cage satellite vivarium

10 research floors

1 shared research core floor

Loading docks serving all campus vivaria.
Public Spaces:

- Lobby and access to Alumni Courtyard
- Roof Terrace and Cafeteria
- Conference Center

STATUS: In Design

SITE CONDITIONS

FEMA Advisory Map

PROJECT

FIRM ELEVATION	DATUM	
(NAVD 88)	(BPMD)	
1\% EL:	8.9	7.25
$0.2 \% \mathrm{EL:}$	10.9	9.25

ADVISORY BASE
PROJECT FLOOD ELEVATION
(NAVD 88)
1\% EL: $12.0 \quad 10.35$
0.2\% EL: 16.0

SITE CONDITIONS

Datum Conversion

Approx. 14-foot Storm Surge at the Battery (MLLW) = 9.6' Manhattan
Datum

SITE CONDITIONS

Floor Elevations

CAMPUS RESILIENCY STRATEGIES

1. Cogeneration: On-site Heat and Power Generation
2. Enhance System Redundancy
3. Protect the Campus Perimeter
4. Elevate Critical Infrastructure
5. Relocate Critical Patient Care and Support Functions

1. COGENERATION

Existing Power Systems

1. COGENERATION

Proposed Power Systems

- Natural gas is burned to generate 8 megawatts of power
- Can be run in "island mode" to serve all essential loads, including air-conditioning in patient areas
- Medium tension distribution across campus; transformers provided at each building
- Steam is generated as a biproduct to satisfy entire campus load
- Back-up boilers run on both gas and oil
- All components to be located above the DFE

Cogeneration Plant
\bigcirc
Sub-station
\square Con Edison Service

1. COGENERATION

Existing Normal Mode

Con Ed Steam \longrightarrow| Heating |
| :--- |
| Cooling |
| Sterilization |

$\xrightarrow{\text { Con Ed Power }}$

1. COGENERATION

Existing Emergency Mode

1. COGENERATION

Planned Emergency Mode (Initial 1-3 hours)

1. COGENERATION

Planned "Island Mode" (after 1-3 hours)

CAMPUS RESILIENCY STRATEGIES

1. Cogeneration: On-site Heat and Power Generation
2. Enhance System Redundancy
3. Protect the Campus Perimeter
4. Elevate Critical Infrastructure
5. Relocate Critical Patient Care and Support Functions

2. ENHANCED CAMPUS REDUNDANCY IT Systems

- Two points of entrance
- Two Telecommunications Equipment Rooms (TER)
- Diverse and redundant distribution pathways
- Each TER served from two POE
- Each building served from both TERs
- All critical equipment above the DFE

POE

2. ENHANCED CAMPUS REDUNDANCY
 Chilled Water

Chilled Water

- All plants feed a central campus loop at the rooftop level
- Chiller plants on emergency power
- Chiller plants can be powered indefinitely from cogen in "island mode"
- Steam chillers provide additional diversity

2. ENHANCED CAMPUS REDUNDANCY

Fire Communications

Fire command centers below the Design Flood Elevation to report back to the Skirball station accessible from First Avenue

Fire Command Center Above the DFE (First Floor)

Fire Command Center Below the DFE (Ground Floor)

Normal FD Access

CAMPUS RESILIENCY STRATEGIES

\author{

1. Cogeneration: On-site Heat and Power Generation
 2. Enhance System Redundancy
 3. Protect the Campus Perimeter
 4. Elevate Critical Infrastructure
 5. Relocate Critical Patient Care and Support Functions
}

SITE CONDITIONS

FEMA Advisory Map

ADVISORY BASE FLOOD ELEVATION (NAVD)

1\% EL: 12.0
0.2\% EL: 16.0

DESIGN FLOOD
ELEVATION:

PROJECT DATUM
(BPMD)
10.35
14.35
0.2\% EL + Freeboard

3. PROTECT CAMPUS PERIMETER

Flood Wall

- Develop a campus flood wall system up to 500-yr advisory elevation
- Build in up to two feet of freeboard as feasible
- Upgrade walls and slabs for increased hydrostatic pressure

3. PROTECT CAMPUS PERIMETER

Flood Wall

- Upgrade walls and slabs as required to resist increased hydrostatic pressure

3. PROTECT CAMPUS PERIMETER

Flood Wall

1. Raise sills where possible
2. Provide flood gates as entrances
3. Reinforce existing walls

Post-storm Design

3. PROTECT CAMPUS PERIMETER

Flood Gates

A. Demountable

- Storage and training required
- Labor intensive to erect and demount
- Requires more time in advance of storm
- Poor installation can result in failure
- Staging and erection of material may conflict with other storm preparations, especially at loading docks
B. In-place
- No storage required-can't be lost
- Can be regularly tested with less disruption to normal operations
- Can be implemented later in the storm and demounted more quickly
- More reliable if maintained properly
- More expensive
- Can be active or passive

3. PROTECT CAMPUS PERIMETER

Flood Gates

For large areas of storefront glazing, consider vertically-rising flood walls

WALL IN USE

NORMAL CONDITION

3. PROTECT CAMPUS PERIMETER

Other Considerations

- Back-flow prevention on storm and sanitary connections
- Consider pressure-rated piping below the Design Flood Elevation
- Assume some level of infiltration in any dry-flood-proofed condition
- Develop a pumping plan and provide emergency power

CAMPUS RESILIENCY STRATEGIES

1. Cogeneration: On-site Heat and Power Generation
2. Enhance System Redundancy
3. Protect the Campus Perimeter
4. Elevate Critical Infrastructure
5. Relocate Critical Patient Care and Support Functions

4. ELEVATE CRITICAL INFRASTRUCTURE

New Buildings

- All systems to be located above the DFE unless prohibited by code
- No below-grade space in Kimmel or Energy Building
- Ground floor used for building access, storage, and parking
- Where systems cannot be elevated by code (fuel oil) provide secondary protection (vault within a vault)
- Fuel pumps and generators to be inside the building and accessible for maintenance during flood conditions

4. ELEVATE CRITICAL INFRASTRUCTURE Tisch Hospital—Pre-Storm Plan

4. ELEVATE CRITICAL INFRASTRUCTURE Tisch Hospital—Post-Storm Plan

CAMPUS RESILIENCY STRATEGIES

1. Cogeneration: On-site Heat and Power Generation
2. Enhance System Redundancy
3. Protect the Campus Perimeter
4. Elevate Critical Infrastructure
5. Relocate Critical Patient Care and Support Functions

5. RELOCATE CRITICAL PROGRAMS
 \section*{Existing Buildings}

a. Radiation Oncology (to $2^{\text {nd }}$ Floor of Energy Building)
b. Inpatient MRI (to $2^{\text {nd }}$ Floor of Tisch)
c. Outpatient MRI (to offsite facility, $38^{\text {th }}$ Stree

Tisch 2 MRI Suite

5. RELOCATE CRITICAL PROGRAMS Existing Buildings

Where a program cannot be elevated:

- Rely on campus flood wall
- Provide additional localized protection
- Plan for pumping
- Develop an emergency operation plan to continue essential services in the event of a failure

